Messprotokoll

Fugendurchlässigkeitsbestimmung über Lochblende

Prüfprodukt, Klimadaten, Messreihe und Ergebnisse

Prüfprodukt

Auftraggeber

Bezeichnung:	VentilationNord	Name:	VentilationNord
	Energie Spar Mauerkasten		Jan-Michael Schrörs
Artikel-Nr.:	VNESM150	Adresse:	Blumenstraße 31
Dimension:	150 mm		21395 Tespe
		Telefon:	04176 / 5169690
Messdatum:	18.04.2017	Fax:	04176 / 5169689

Klimadaten

Lochblende

Temperatur an Blende:	14,5	°C
Außentemperatur:	14,5	°C
Luftdruck (Standard)	101325	Pa

Luftwiderstandswert c _d :	0,61	[-]	
(scharf	kantige Ö	Öffnung)	

Messreihe

Lochdurch- messer	A_{LB}	p Bauteil	p Blende	Volumenstrom durch Blende	Abwei- chung	Volumenstrom durch Bauteil
(cm)	(cm²)	(Pa)	(Pa)	(m³/h)	(%)	[m³/h]
	$\Delta p_{01} =$	0,0				
1,00	0,79	-11,0	9,90	0,69	-2,64	0,69
1,00	0,79	-20,0	20,40	0,99	2,50	0,99
1,00	0,79	-29,0	29,10	1,19	0,97	1,19
1,00	0,79	-40,0	39,80	1,39	-0,06	1,39
1,00	0,79	-49,0	51,20	1,58	2,03	1,58
1,00	0,79	-60,0	60,20	1,71	-0,40	1,71
1,00	0,79	-71,0	70,50	1,85	-1,2	1,85
1,00	0,79	-80,0	81,10	1,98	-0,4	1,98
1,00	0,79	-89,0	92,10	2,11	0,4	2,11
1,00	0,79	-101,0	101,90	2,22	-1,1	2,22
	$\Delta p_{02} =$	0,00				

Korrelationskoef. r:		0,999	Vertrauensintervall	
C _{Bauteil}	[m³/(h Pa ⁿ)]	0,205	max 0,22	min 0,19
C _{Standard}	[m³/(h Pa ⁿ)]	0,207	max 0,22	min 0,19
n	[-]	0,52	max 0,54	min 0,50

Ergebnis, Kenngrößen

Fugenlänge:	0.39 m
i aqcillaliqc.	0.00

Gesamtvolumenstrom	Volumenstrom				
	Druckdifferenz am Bauteil:	50	Pascal	1,6 m ³ /h	+/- 10 %

Volumenstrom bezogen auf die Fugenlänge (a-Wert)	Fugendurchlässigkeit		
Druckdifferenz am Bauteil:	50	Pascal	4,08 m³/(h*m) +/- 10 %

Durchmesser einer äquivalenten, kreisrunden Leckagefläche	0,7 cm	+/- 10 %
---	---------------	----------

Bemerkung: Der Volumenstrom wird auf Standardbedingungen (Temperatur=20°C, Luftdruck=101325 Pa) korrigiert.

Auftragnehmer : Dipl.-Ing. Michael Meyer-Olbersleben Ingenieurbüro Meyer-Olbersleben, Ihr Haus-Doktor

21335 Lüneburg, An der Schule 41

18.04.2017 Datum, Unterschrift

der Gebäude-Luftdichtheit im Sinne der Energieeinsparverordnung

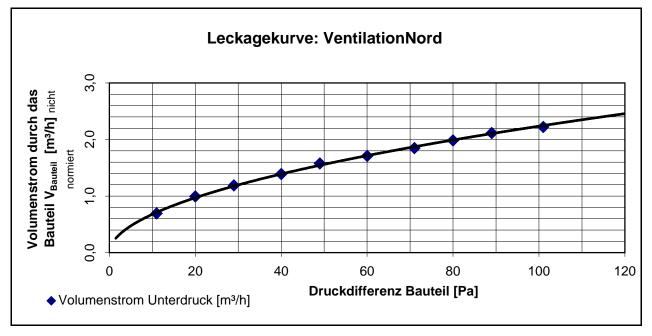
15.04.2002 Stempel Nr. 014/2002

Messprotokoll

Fugendurchlässigkeitsbestimmung über Lochblende

Produkt: Energie Spar Mauerkasten

VNESM150


Prüfer/in: Dipl.-Ing. Michael Meyer-Olbersleben

Datum: 18.04.2017

Prüfverfahren

Gesetzmäßigkeit: $V = 0,36 * (2/p)^{0.5} * c_d * A_{LB} * \Delta p^{0.5}$ mit: ρ Rohdichte Luft c_d Luftwiderstandswert A_{LB} Querschnittsfläche Lochblende Δp Druckdifferenz an Lochblende
Verfahren: Messung kleiner Volumenströme mit Hilfe von Lochblenden.
Quelle: Walther, Wilfried; 2003; 8. BlowerDoor Symposium

Grafische Darstellung der Leckagekurve

Zugrunde liegende Normen


DIN EN 13829	DIN EN ISO 9972	DIN EN 12599	
DIN 1946-6	DIN 13779	EUROVENT 2/2	
DIN 24194-2 DIN 12237	DIN 1505	VDI 6022	

Messgeräte und verwendete Software

MessSystem:	Minneapoli	Minneapolis Duct Blaster Modell B, DG-700						
Gerätenummern:	Gebläse:	12608	Druckmessgerät: DG700 - 62905	kalibriert:	13.11.2015			
Software:	TECLOG V	TECLOG Vers. 3.3.0.4						

Messprotokoll

Fugendurchlässigkeitsbestimmung über Lochblende

Produkt: Energie Spar Mauerkasten

VNESM150

Prüfer/in: Dipl.-Ing. Michael Meyer-Olbersleben

Datum: 18.04.2017

Gutachterliche Stellungnahme

Die Bestimmung der Luftdichtheit des Teleskop-Mauerkastens wurde mit einem Minneapolis DuctBlaster und einer digitalen Druckmessdose DG700 durchgeführt.

Der getestete Teleskop-Mauerkasten VNESM150 wurde dazu an ein Ende eines 2 m langen KG-Rohres DN150 luftdicht angeschlossen. An das andere Ende des Messrohres wurde das Messgebläse luftdicht angeschlossen.

Im Messrohr wurden zwei Druckaufnehmer für die Messung der Druckdifferenz zwischen innen und außen platziert. Ein weiterer Druckaufnehmer wurde an der Messblende platziert.

Die Messreihe wurde mit einer dünnen Messblende mit einer scharfkantigen Bohrung von 10 mm Durchmesser durchgeführt.

Es wurden nur Messreihen bei Unterdruck durchgeführt, da bei der Überdruckmessung festgestellt wurde, dass die beiden Sturmklappen im Teleskop-Mauerkasten bereits bei sehr geringen Luftvolumenströmen bestimmunggemäß öffnen.

Es wurden dabei Druckdifferenzen bis -100 Pa gemessen.

Bei der Messung konnte festgestellt werden, dass der Mauerkasten VNESM150 mit Doppel-Sturmklappen bei einer für die Blower-Door-Messung üblichen Druckdifferenz von 50 Pa, einen Leckagestrom von nur 1,6 m³/h aufweist.

Bei der Messung konnte zudem festgestellt werden, dass die Lage (senkrechte oder waagerechte Achse) der Sturmklappe im Mauerkasten keine Rolle spielt.

Dadurch ist der Teleskop-Mauerkasten zum Einbau in energie-effiziente Gebäudehüllen sehr geeignet. Bei Luftdichtheitsmessungen (Blower-Door-Tests) nach DIN EN 13829 ist es bei Unterdruck nicht erforderlich, dieses Bauteil temporär abzudichten.

Lünebura Unterschrift

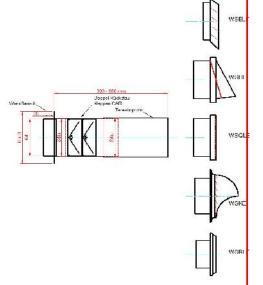
der Gebäude-Luftdichtheit im Sinne der Energieeinsparverordnung

15.04.2002 Stempel

Nr. 014/2002

Zertifikat

über die Qualität der Luftdichheit


Am Bauteil:

VentilationNord

Energie Spar Mauerkasten

VNESM150

Dimension: 150 mm

wurde bei der Messung in Anlehnung an DIN EN 13829 und DIN EN ISO 9972 folgender Gesamtleckagestrom ermittelt:

$$v_{50} = 1,6 \text{ m}^3/\text{h} +/- 10\%$$

Der Durchmesser einer kreisrunden, äquivalenten Leckagefläche beträgt:

 $\emptyset = 0.7 \text{ cm} + -10 \%$

Dieses Bauteil ist für den Einbau in energieeffiziente Gebäudehüllen geeignet.

Die Messerwerte können bei fehlerhaftem Einbau abweichen.

Erstellt am 18.04.2017

durch FLiB-Mitglied-Nr.: 400
Zertifizierungsnummer.: 014/2002

Name: Ingenieurbüro Meyer-Olbersleben

Anschrift: *An der Schule 41*21335 Lüneburg

Tore

Mi. Myar

ZERTIFIZIERTER PRÜFER

der Gebäude-Luftdichtheit im Sinne der Energieeinsparverordnung

15.04.2002

Nr. 014/2002

Lüneburg

Dipl.-Ing. M. Meyer-Olbersleben